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Abshact We compute the semiclassical magnetization and susceptibility of non-interacting 
electrons, confined by a smwlh two-dimensional potential and subjected to a uniform 
perpendicular magnetic field, in the general case when their classical motion is chaotic, It 
is demonstrated that the magnetization per particle m ( B )  is directly related to the staircase 
function N ( E ) ,  which counts the single-particle levels up to energy E .  Using Gutwiller’s 
trace formula for N ,  we derive a semiclassical expression for m. Ow results show that the 
magnetization has a non-zero average, which arises from quantum corrections to the leading- 
order Weyl approximation to the mean staircase and which is independent of whether the classical 
motion is chaotic or not. Fluctuations about the average are due to classical periodic orbits and 
do represent a signature of chaos. This behaviour is confirmed by numerical computations for 
a specific system. 

1. Introduction 

Semiclassical theory shows that classical dynamics has an important influence on quantum 
energy spectra [l-31. In the case of simple systems, such as the hydrogen atom in a strong 
magnetic field, the spechvm can be measured directly and put into correspondence with 
random-matix statistical properties and with periodic orbit theory [4-71. In more complex 
systems, however, a direct observation of the energy levels is usually not possible and so 
the effects of the underlying classical dynamics have to be studied in terms of other physical 
quantities. 

The magnetic susceptibility of a system of charged particles was proposed by Nakamura 
and Thomas [8 ,9]  as one quantity whose quantum behaviour might depend sensitively on 
the chaotic nature of the associated classical motion. To understand why this is so, consider 
a system of 2P non-interacting electrons moving in a two-dimensional potential V ( x ,  y) and 
subject to a constant magnetic field B in the perpendicular direction. (Such systems have 
been used as models for small two-dimensional metallic particles where the free electrons 
only interact with the particle boundary, here represented by V.) At zero temperature the 
electrons fill the first P available levels (here we ignore the spin-field interaction). Now 
imagine changing the field strength E adiabatically, following the energy levels as functions 
of E. If the Hamiltonian is classically chaotic, no degeneracies are expected and the levels 
will fluctuate, exhibiting avoided crossings. If, on the other hand, it is integrable then the 
levels can (and typically do) cross, exhibiting a much smoother behaviour as E is varied. 
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The magnetization mo and magnetic susceptibility xo per electron at zero temperature 
are given as first and second-order derivatives of the total energy with respect to the field 
B ,  respectively, 

1 aE" mo(B)  = -- - P aB 

1 aZE, 
P "=l aB* 

*=I 

X d B )  = -- c - 
At an avoided crossing between levels i and j at field strength B,  both derivates a2Ei/aB2 
and a*Ej/aBZ assume large values but have opposite signs and therefore their contributions 
nearly cancel. The contribution of the last filled level at an avoided crossing with the 
next (unfilled) level is, however, not cancelled, and this produces large peaks in x o ( B ) .  
Moreover, it obviously follows that these peaks will correspond to enhanced susceptibility, 
because they are associated with maxima of the level curve. We should, of course, also 
remark that, as pointed out in [8], such peaks are not necessarily a signature of chaos. In 
fact, integrable or nearly integrable Hamiltonians present even sharper peaks than chaotic 
ones. Nevertheless, the dynamics of the energy levels as a function of the magnetic field is 
generally different for regular and chaotic systems, and the question is whether this leads 
to distinct behaviour in the susceptibility and magnetization. 

In the work of Nakamura and Thomas [8]  the systems considered were the circular 
billiard, which is integrable for all values of the applied magnetic field, and the elliptic 
billiard, which is integrable only for B = 0 [IO]. The elliptic billiard in a magnetic field 
has also been used as a simple model to describe a rotating atomic nucleus, the susceptibility 
playing the role of the moment of inertia [ I l l .  The diamagnetic properties of the spectrum 
in an elliptic shell have also been investigated in detail by Berman etal [12]. 

In this paper we study the semiclassical properties of x ( B )  and m ( B )  both theoretically 
and numerically. It will be shown that the magnetization can be expressed as a sum of a 
smooth term (its average) plus oscillatory contributions associated with classical periodic 
orbits. The smooth term is related to the corrections to Weyl's leading-order asymptotic 
approximation for the eigenvalue counting (staircase) function N ( E ) ;  the oscillatory terms 
are derived using Gutzwiller's trace formula [13]. At zero temperature all orbits contribute 
to mo(B) ,  while for a finite temperature T only short orbits (with periods 7 < A / k a T )  do 
so. A similar theory was recently constructed for billiard systems in [14]. This work goes 
beyond our study in that it  considers RiemannSiegel-type resummations [U, 161 of the 
divergent periodic orbit sums involved. However, it failed to include the Weyl-series terms, 
which turn out to play an important role in determining the magnetic properties. 

The theory developed here shows that, contrary to the numerical conclusions drawn by 
Nakamura and Thomas [8 ] ,  the magnitude of the susceptibility at zero magnetic field is, on 
average, independent of whether the system is chaotic or not: it depends only on the Weyl 
series for the mean of the staircase function and so is determined solely by global properties 
which are unrelated to the stability of the classical trajectories. This is confirmed by the 
results of our numerical tests. 

For the numerical study we chose a smooth, non-integrable, non-scalable Hamiltonian 
which exhibits regular behaviour at low energies and chaotic behaviour at higher energies. 
By using different values of TI we can choose the first P levels to lie completely in the 
regular region or mostly in the chaotic region. In this way (contrary to the study in [SI), 
all symmetry properties of the regular and chaotic cases are exactly the same (because they 
correspond to the same system) and hence any differences in the behaviour of x ( B )  or 
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m(B)  can be attributed exclusively to the underlying classical dynamics. We also present 
results for the harmonic oscillator Hamiltonian [17], where the mean magnetization can be 
computed analytically and compared to the exact result. 

The paper is organized as follows: in section 2 we derive the necessary semiclassical 
theory for the magnetization; in section 3 we show the results for the harmonic oscillator; 
in section 4 we define our smooth Hamiltonian and study its single-particle properties for 
various values of the magnetization field B ,  comparing the numerical results for m(B)  
and x ( B )  with the semiclassical theory of section 2: finally, section 5 is devoted to our 
conclusions. 

2. Semiclassical theory of magnetization 

2.1. Thermodynamics 

The thermodynamic definition of the magnetization at temperature T is [18] 

aF 
aB M T ( B )  = -- 

where 
a 

F = - - l o g 2  
ag 

is the Helmholtz free energy, 2 is the partition function, and @ = l / k ~ T ,  where ks is the 
Boltzmann constant. For a system of 2P non-interacting fermions at zero temperature, F 
is just the ground-state energy 2 E,@), where E,,@) are the single-particle energies, 
which depend on the magnetic field B.  In this case, the magnetization per particle is simply 

1 1 aE. 
mo(B) = -M@) = -- -. 

P aB "=I 2P 

Finite temperatures may be taken into account by incorporating the Fermi function 

(3) 

where z .  the chemical potential, depends on the magnetic field and the temperature through 
the constraint 

In terms of gT(E), the magnetization per particle at finite temperatures is given by 

Notice that, according to (4), as T -+ 0 gT(E,) approaches a step function centred at the 
Fermi energy Ef = (I/@)logz, which satisfies E p  6 Ef < E P + I .  Hence in this limit (6) 

We now show that both expressions (3) and (6) can be written in terms of the spectral 
reduces to (3). 

staircase 
m 

N ( E ,  B )  = z O ( E  - E.(E)) 
" S I  

(7) 
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where 0 denotes the unit step function. For the case of zero temperature, it is trivial to see 
that 

S D Prado et 41 

For T # 0 we have from (6) that more generally 

As T --f 0 it is dear that (9) reduces to (8). 

2.2. Semiclassical limit 

Having expressed the magnetization in terms of the spectr: 
to take the semiclassical limit. Writing 

N(E, E) = F +  Nos, 

, it a simr matter 

we can use the fact that, as R + 0, the average part may be represented in the form 

N = Nweyl + corrections z - O(E - H ( q ,  p ) )  d2q d2p + corrections (11) 

where the correction terms constitute an asymptotic series in increasing powers of p1, and 
the oscillatory part is given by 

f i 2  ' S  - 

with 

where M, S and U are the monodromy matrix, action and Maslov index of the primitive 
periodic orbits, labelled p ,  and their repetitions, labelled j [13]. 

We first consider the contributions from the average term F. As discussed in Peierls 
[19], the Weyl term itself does not contribute to the magnetization for systems with a 
Hamiltonian of the form kinetic-plus-potential energy. This is because the change of 
variables 

e 
n = p - - A ( q )  R = q  

C 

has unit Jacobian and removes any vector-potential dependence from the integral in (11). 
In  other words Nweyl is independent of B. Therefore, the (quantum mechanical) corrections 
to Nweyl are very important and at least the dominant terms must be computed. We shall 
do this calculation explicitly for the harmonic oscillator in section 3 and for the Nelson 
potential in the appendix. 

Proceeding with the oscillatory contributions, we write 

m d B )  ET(B) + mgYE) (14) 
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where i i i r (E )  is the average part coming from the corrections to Nwcy,. It follows from (4) 
and (9) that 

- - - d E  
P j=1 

where 

.- 

is the analogue of the primitive period BS,/BE appearing in the semiclassical density 
of states [13]. Assuming that kT << Ef, the integral in (15) can be evaluated in the 
semiclassical limit, giving 

where A p , j ,  S,, up, and the period are evaluated at the Fermi energy E = Ef. It is 
clear from this expression that the contribution of each periodic orbit to m F  consists of a 
sinusoidal oscillation of period 2zh/jap. Taking the limit as T + 0 gives 

where again all quantities are evaluated at energy E = Ef. 

transform of m y .  Since mT(B) is an odd function of B, this may be defined as 
In order to study the fluctuations in the magnetization, it is useful to compute the Fourier 

hy(a) = lmm;s(B)sin(aB/L)dB. (19) 

For low temperatures we may substitute (17) for mFs(B) and so find in the semiclassical 
limit that if i labels the solutions of jaP(&) = U then 

-0% z k T  Ap,jap exp (-xkTzDj/h) mT (a) = - ' cc  [I -exp(-27ckT~~~/fi)] p P j=l i 

which shows peaks at a = jap(Ep) in analogy with the peaks at r = jaSp/aE of the 
Fourier transform of the density of states [2,  5,201. 

It m y  be seen from (17) that the effect of finite temperatures is to truncate the periodic 
orbit sum in period 5. To isolate contributions from smallup orbits it is necessary to smooth 
mO,SC(B) with respect to B. Hence we take the convolution of (17) with a Gaussian of width 
A, that is. we define 

For low temperatures, the semiclassical form of mO;:C, may be obtained by substituting the 
periodic orbit sum (17) into the integral, giving the result 
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which clearly shows the desired truncation in aP. 
In conclusion, the power spectrum of myA(B)  gives peaks at ja,  = jaS , /aB and cuts 

off the contribution of long orbits if T # 0, and of large-a, orbits if h # 0. Equivalent 
expressions for the semiclassical susceptibility can be obtained directly by differentiating 
(17) and (18) with respect to B. Clearly this implies that oscillatory terms in ) ( ( E )  are 
U(l/h) bigger than the corresponding terms in m ( B ) ,  and hence that the fluctuations will 
be significantly larger in this case. 

S D Prado et a1 

3. The harmonic oscillator 

The two-dimensional harmonic oscillator in a uniform magnetic field was extensively studied 
by Ntmeth [17]. In this section we calculate mo(B)  in the semiclassical limit, focusing in 
particular on its average behaviour. 

The Hamiltonian is given by (m = e = c = 1) 

(23) 1 1 2 2  1 2 2  H 5 5b.r + By)* + ~ ( P Y  - Ex)'+ ~ ( O I X  + ~ V Z Y  
and the energy levels by [ 17,211 

where 
E,,,, = hol (nt + 4) + hwz(n2 + 4) 

wz = f[JB2 + ((01 + @Iz - de2 + (91 - ~ 2 ) ' ] .  

(24) 

01 = f [ J B z  + ((01 + @I2 + de2 + ((01 - VZ)']  

(2% 
The exact result for mo is showwin figures 1 and 2 as a function of B and 01/02 

respectively, for h = 0.06, rpt = m, @ = A. It is clear from these figures that mo(B)  
shows an average increase in B and that it has peaks corresponding to values of B where 
the tori in phase space are resonant, i.e. filled with periodic orbits. Similar results have 
been obtained recently by Ullmo et a1 [221 for square billiards and, in a different context, 
in the magnetoresistence in lateral surface superlattices [23]. 

The average magnetization can be computed from the corrections to the leading-order 
(Weyl) approximation for the mean of the staircase function. Defining 

~ ( p )  = tr(e+") (26) 
it is obvious that N ( E )  is the inverse Laplace transform of Z(p) /p .  For the oscillator 

'(') = 4 s i n ~ p ~ w l / ~ )  sinh(@fiwz/2) 

and hence we find that 
(27) 

1 - - * [ 1 - + 0:) + 0(h4p4) 
1 

~ p z W ~ o ~  

- E2 (0: + 4) N ( E )  = - - 
2h2Wl@ 4!OlY 

(28) 
E* ( E 2  + p; + $) =-- 

~ ~ ' V I V Z  4 k V 2  
Notice that this result is exact, since the terms in (27) which involve powers of p higher 
than the second give rise to contributions which are purely oscillatory. 

As expected, the first (Weyl) term does not depend on B. Hence the only contribution 
to the average magnetization comes from the second term, which gives 
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Figure 1. -ma as a function of B for Ule harmonic 
oscillator. The straight line indicates the average 
magnetization. 

Figure 2. -ma as a function of wi/wn for the harmonic 
oscillator with P = 120. 

This straight line is shown in figure 1. It agrees very well with the numerical results. 

4. A non-integrable model: chaos versus regularity 

4.1. Single-particle features 

The Hamiltonian now to be considered, sometimes called the ‘Nelson Hamiltonian’, is 

(30) 

where we have again set m = e = c = 1. The motion which it generates can be shown 
to be bounded for all values of B and has been widely studied both classically, in terms 
of periodic orbits [NI and bifurcations [25], and quantum mechanically (for B = 0 only) 
[20,26]. One of the advantages of working with a smooth system is that not only is it more 
realistic than the billiard systems previously studied [S, 10-121, but it is also non-integrable 
for all values of B ,  which makes it somewhat more generic. 

In figures 3 and 4 we present sample Poincark sections at relevant energies and values 
of B. For B = 0, chaotic motion sets in at about E = 0.1. For a fixed energy the character 
of the classical dynamics changes with the applied magnetic field, becoming more chaotic 
for moderate B (at a specific value which depends on the energy) and tending to regular 
for large B.  

Of particular importance in our study is the behaviour of dS/dB versus B for the periodic 
orbits (see (18) and (19)). We have computed this quantity for the principal orbits of the 
Nelson Hamiltonian and the results are shown in figure 9 for the case when E = 0.314638, 
which correspond to the Fermi energy for P = 30, h = 0.06 and E = 0. 

The eigenvalues of the Nelson Hamiltonian were computed by diagonalizing 700 x 700 
complex Hermitian matrices in an appropriate basis [27]. To test their convergence we first 
compared these values with those obtained from a 1000 x 1000 diagonalization. This 

1 1 
2m 2m H = - (px + By)’ + - ( p y  - Bx)’ + 0 - $x*)’ + 0.05~’ 
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-0.4 
-1.0 -0.5 0.0 0.5 1. 

X 

4.4l 
-1.0 -0.5 0.0 0.5 

X 

0.41 
0 .l.O -0.5 0.0 0.5 1 

X 

Figure 3. x-p, P o i n d  sections at energy E = 0.06 
and magnetic fields: (a)  B = 0.0, (b)  B = 0.5 and 
(c) B = 1.0. 

3 

is, however, not sufficient to parantee the quality of the results, because in order to 
evaluate derivatives with respect to the magnetic field we have to find the change in the 
E. generated by very small changes in E. Therefore, we also compared the difference 
between the above diagonalizations at B = 0 (i.e. E,!wo(0) - Ezw(0)). with the difference 
E.?W(AE)-Ezw(0), where AE = 0.005 is the field step-size used in our computations. Our 
subsequent calculations were performed using two values of h, h = 0.06 and h = 0.006, for 
which an analysis of these energy-level differences showed that the number of converged 
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-0.5 0.5 
X 

0.5 . 

Px 
0.0 . 

-0.5 . 

-1.0 ' 
-1.5 -0.5 0.5 

X 

0.5 - 

Px 
0.0 . 

-0.5 - 

-1.0 
-1.5 0.5 0.5 

X 

Elglue 4. x-p, Pohcad sections af energy E = 
0.32 and mgnelic fields: (a) B = 0.0, (b) B = 0.5 
and (c )  B = 1.0. 

i 

levels was about 30 in the lirst case and 1.50 in the second (although, for reasons to be 
explained below, we ultimately used only the first 120 of these in OUT calculations). 

It follows that in the present study the two important ranges of energy are from zero 
to Er = 0.064303481 and from zero to Ec =-0,314638, these values corresponding 
approximately to the 120th level for A = 0.006 and the 30th level for ?i = 0.06. The energy 
of the Poincar6 sections in figure 3 corresponds to E,. Clearly the orbits are still quite 
regular. For smaller energies we get increasingly regular plots; hence in the first energy 
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0.06 

E 0.04 

0.02 

0.00 
0.0 0.2 0.4 0.6 0.8 1.0 

B 

0.30 

E 020 

0.10 

0.00 
0.0 0.2 0.4 0.6 0.8 1.0 

B 

Figure 5. Dependence of the energy levels on the scaled field B .  (a) shows the first I20 
’regular’) levels for h = 0.006, (b)  shows the first 30 (‘chaotic’) levels for h = 0.06 (‘chaotic 
levels’). 

range the classical motion is almost entirely integrable. By contrast, it may be seen from 
figure 4 that the second range is mostly chaotic for B E [O. 11, in the sense that the regular 
portion of the phase space is a very small fraction of the total. 

Figures 5(a) and ( b )  show the dependence of the energy levels on the scaled field 
B.  The spectra were computed for 200 values of B in the interval (0, 1) at constant 
step A B  = 0.005. When h = 0.006 the first 120 states are regular, while for h = 0.06 
most of the first 30 lie in the chaotic range (only the litst three are still in the regular 
region). Henceforth, these two cases will simply be referred to as ‘regular’ and ‘chaotic’, 
respectively. 

4.2. Magnetization and periodic orbits. 

We computed the magnetization per particle at zero temperature (equation (3)) for both the 
regular and chaotic spectra. The results for the regular case (figure 6(a)) are very similar 
to those of section 3 for the harmonic oscillator, with the periodic tori playing the most 
important role. The chaotic case (figure 6(b))  is, however, strikingly different, and we now 
analyse these results in terms of the semiclassical theory developed in section 2. 

The first terms in the asymptotic expansion of the average of the staircase function for 
the Nelson Hamiltonian can be computed directly. An outline of the calculation is presented 
in the appendix; the result is identical to the expression for the harmonic oscillator (28) 
with 91 = and (pz = J?J. Hence, once again, the Weyl term itself does not influence 
the magnetization: the main contribution comes from the correction terms and leads to an 
average linear increase given by (29). 

Figures 6(0) and (b)  display the numerically computed mo(B). It should be stressed 
that in this case equation (29) is expected to represent a good approximation for iiio(B) only 
for small fields B ;  further (nonlinear) contributions, not present for the harmonic oscillator, 
may be derived from neglected higher-order terms in the full Weyl expansion for F. It is, 
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0.004 

0.003 

-m 0.002 

0.001 

0.000, 

// 
I 

0,040 

0.030 

-m 0.020 

0.010 

0.000 
I I 

Figure 6. -mo as a function of B .  (a) shows the result for the regular levels and (b)  shows 
the result for the chaotic levels. 

of course, also the case that the gradient of mo(B) at E = 0, that is, xo(0), fluctuates around 
the mean as the number P of electrons changes. Therefore, a plot of xo(0) as a function 
of P represents a more complete test. The expectation for the average behaviour is that 

where we have used (28) to write Ef as a function of P. This follows because the average 
with respect to P obviously corresponds to an average over Er and hence has the effect 
of removing the periodic orbit contributions. It is shown, together with the numerically 
computed values, in figures 7 ( a )  and ( b )  for the regular and chaotic cases, respectively. 
The results confirm that our computations are reliable for P up to 30 if R = 0.06 and for P 
up to about 120 for f i  = 0.006 (rather than 150 as suggested by the tests described in the 
previous subsection). 

Equation (31) is most interesting when viewed in the light of the conjecture by Nakamura 
and Thomas [SI that the size of xo(0) should reflect the chaotic nature of the underlying 
classical mechanics. The theory outlined above suggests the opposite, namely that when 
averaged over P. xo(0) will in fact depend only on general features of the system in 
question, features which are not related to orbit stability. Specifically, the average of xo(0) 
is independent of the precise nature of the dynamics in the same way that (and in fact 
because) the first terms in Weyl’s asymptotic expansion of the mean staircase are. The 
numerical results described above confirm this for the Nelson Hamiltonian. 

Exactly the same conclusion also follows for Aharanov-Bohm billiards [28], since for 
these systems it is also known that the first two terms of the Weyl series (i.e. the area and 
perimeter contributions) are independent of B ,  but the third (i.e. the ‘constant’) is given by 

C(4) = C(0) - 4(1 - 4)/2 (32) 

where C(0) = for any billiard with a smooth boundary, and 4 is the (quantum) magnetic 
Rux talren modulo 1 [29]. Hence this term also gives rise to a net mean magnetization 
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0,002 0.020 

(1 
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50 100 150 

-0.001 I 
0 

P 

0.010 

7 

0.000 

i o  20 30 
P 

Q.010 
0 

Figure 7. -xo as a function of P for ( U )  the regular levels, I < P < 150, and (b)  the chaotic 
levels. 1 < P < 50. The curve represents the theoretical result (31). 

which is independent of whether the billiard supports integrable, mixed, or chaotic classical 
motion when averaged with respect to the number of electrons. 

It follows from the analysis of section 2 that the chaotic nature of the associated classical 
flow is expected to show itself in the fluctuations of the magnetization about its mean. 
These are most easily studied by taking the Fourier transform of m y ( B ) .  Numerically, we 
obtained this oscillatory part by subtracting from mo its average, computed directly rather 
than simply using (29) since, for the reasons noted above, the analytical approximation is 
only valid for small values of B.  

In figure 8 we show this Fourier transform and compare the peaks with the values of 
dS/dB for the shortest periodic orbits. Although the plot indicates that the most pronounced 
peak indeed corresponds to the first orbit, it is difficult to take this analysis M e r ,  because 
each orbit in fact contributes more than once (see equation (20)). Therefore, a better test 
of our semiclassical theory is provided by considering the local Fourier transform over a 
range AB,  defined as 

+m 
+ x)e-~xPe-x'/(2AB') &, (33) 

J_m 
%y(a, E ,  A B )  = 

Using (17) for my and assuming A B  << E ,  we have that semiclassically 

where the function 
&AB 

I ( a ,  E ,  A B )  = - 2i 

1 [ e i j ( S ~ P - n o p l z ) e - ( o - j ~ ~ ( B ) ) l A B z / ~ z  - e - i j ( S , / n - n ~ ~ / 2 ) e - ( ~ + j = ~ ( B ) ) ' a s 2 / u r 2  

has Gaussian peaks at a = &jaP(B),  This then has the effect of selecting from the i-sum 
in (20) the particular contribution with Bi m B.  
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1 .o 2.0 3.0 

a=-dSldB 

Figum 8. Fourier transform of m y ( B )  for the chaotic 
case. 

1 .o 

0.9 

B 

0.8 

0.7 

0.6 

Figure 9. Magnetic field versus position of the maxima 
in the local Fourier uansform. The full lines represent 
the shomst periodic orbits al energy E = 0.314638. 
The labelling follows the notarion of [U]. 

We performed a numerical computation of (33) with T = 0. For each value of B a 
local Fourier transform was calculated and the position a(B) of the largest peak tabulated. 
Figure 9 shows the resulting plot of B versus a ( B )  superimposed on the corresponding 
curves for the periodic orbits. It confirms very clearly the strong influence of the shortest 
orbit on mr. Interestingly, it follows from the Poincarb sections presented earlier that this 
orbit is, in fact, stable when B % 1, which probably accounts for the dominance of its 
contribution. They show as well that the V4 orbit also becomes stable at this field value, 
explaining its appearance in the figure too. Obviously we would like to be able to go further 
and identify the contributions from other orbits in the same way; unfortunately, given the 
data currently at our disposal (i.e. using only 30 levels) this has not proved possible. 

4.3. Fluctuations in the susceptibility and size effects 

Having computed the magnetization, it is simple to calculate the susceptibility 

for the regular and chaotic regimes. The results, displayed in figures 1O(a) and (b), show 
that the nature of the classical dynamics also has a strong influence on x ( B ) .  Indeed, 
the difference between the two regimes is much more evident here than in m(B)  since, as 
discussed in section 2, the fluctuations are stronger. It is interesting to note that the peaks 
associated with avoided crossings are particularly sharp in the first (regular) case; the fact 
that they all correspond to enhanced susceptibility directly supports the explanation of this 
phenomenon given in the introduction. 

The dependence of x on the system size, or number P of electrons, is shown in figures 
1 l(a) and (b) for three different values of the magnetic field. From these plots we conclude 
that in both the regular and chaotic cases x fluctuates with P, the average amplitude of these 
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Figure 11. -XB as a function of P for B = 0,0.05 and 1.0 (a )  regular levels. 1 < P < 120. 
and (b) chaotic levels, 1 < P < 30 , 

fluctuations being about twice as large in the chaotic regime (modulo an additional factor 
of 10 due to the different values of h involved). One important difference is the presence 
of anomalous fluctuations in the regular regime. These can again be ready identified as 
avoided crossings at the corresponding values of P and B (see figure 6(a)). Notice that this 
effect is most pronounced when B = 1.0, which represents the most regular case. Except 
for these anomalies, the amplitude of the fluctuations decreases as B increases. 
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5. Conclusions 

We have studied the semiclassical behaviour of the magnetization in a two-dimensional 
non-interacting electron gas both theoretically, in the semiclassical limit, and numerically. 
It has been shown that the fluctuational properties of m ( B )  depend strongly on the chaotic 
nature of the underlying classical dynamics. As is usual in semiclassical theories, the 
periodic orbits play a distinctive role in their description. Moreover, although there is no 
contribution from the Weyl term itself (no classical diamagnetism), there is a net average 
magnetization arising from (quantum) corrections to the mean staircase, that is, from later 
terms in the Weyl expansion. Interestingly, this average is independent of the stability of the 
classical orbits. This implies that when the zero-field susceptibility is averaged with respect 
to the system size (i.e. with respect to the number P of electrons) it too should turn out 
to be similarly independent. This would then appear to contradict the Nakamura-Thomas 
conjecture, at least in the average sense. The numerical results presented here (for T = 0 
only) confirm these semiclassical predictions. 
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Appendix. 

In this appendix we outline the derivation of the partition function for the Nelson 
Hamiltonian (equation (30)). Our method is essentially the same as that described in more 
detail in [30]. 

The partition function is given by 

where 

is the Weyl transform of the operator e d .  Using the operator product formula [30], we 
may write 

where 

The above expression can be expanded as power series in h: 
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In zeroth order we get Uw = e-JHW. Writing 
& = e  -aHw[  1 - $'Ai + Up4)]  

we then find an equation for A ] ,  
CI __ aAi = eBHw[ HwA2eBHw] 

a@ 
in terms of which 

1 Z(p) = - 1 dp2dq2 e-Ba [ 1 - i h Z A i  + U(h4)] 
(hQ) 

Solving for A I  using the Nelson Hamiltonian, we find that 

where rpl = v 6 i  and 'pz = fi. Taking the inverse Laplace transform of Z@)/@ yields 
equation (28) plus corrections of order h4. 
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